您好、欢迎来到现金彩票网!
当前位置:双彩网 > 相似性弧 >

初中人教版的全部数学公式

发布时间:2019-06-04 03:05 来源:未知 编辑:admin

  我是河北省的要人教版(人民教育出版社的)全部数学公式和换算计算方法最好用破折号隔开

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  正方形 c周长 s面积 a边长 周长=边长×4 c=4a 面积=边长×边长 s=a×a

  梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8?? 圆形 s面积 c周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏?半径 c=∏d=2∏r (2)面积=半径×半径×∏ 9?? 圆柱体 v体积??h高?? s;底面积?? r底面半径 c底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径

  圆锥体 v体积 h高 s;底面积 r底面半径 体积=底面积×高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数) 植树问题 非封闭线路上的植树问题主要可分为以下三种情形 ⑴如果在非封闭线路的两端都要植树,那么 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%)

  5 过一点有且只有一条直线 直线外一点与直线上各点连接的所有线 平行公理 经过直线外一点,有且只有一条直线 如果两条直线都和第三条直线平行,这两条直线 同位角相等,两直线 内错角相等,两直线 同旁内角互补,两直线两直线 两直线 两直线 定理 三角形两边的和大于第三边

  26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

  28 定理2 到一个角的两边的距离相同的点,在这个角的平分线 角的平分线是到角的两边距离相等的所有点的集合

  34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

  37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

  38 直角三角形斜边上的中线 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

  40 逆定理 和一条线段两个端点距离相等的点,在这条线 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

  43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

  45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

  47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

  54推论 夹在两条平行线 平行四边形的对角线 两组对角分别相等的四边形是平行四边形

  65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线菱形面积=对角线乘积的一半,即S=(a×b)÷2

  70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线 关于中心对称的两个图形是全等的

  72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

  75等腰梯形的两条对角线等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形

  相等,那么在其他直线 经过梯形一腰的中点与底平行的直线 经过三角形一边的中点与另一边平行的直线 三角形中位线定理 三角形的中位线平行于第三边,并且等于它

  线 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

  89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

  90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

  106和已知线段两个端点的距离相等的点的轨迹,是着条线到已知角的两边距离相等的点的轨迹,是这个角的平分线到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距

  111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

  119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

  122切线的判定定理 经过半径的外端并且垂直于这条半径的直线切线的性质定理 圆的切线垂直于经过切点的半径

  124推论1 经过圆心且垂直于切线 经过切点且垂直于切线切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,

  130相交弦定理 圆内的两条相交弦,被交点分成的两条线推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的

  线与圆交点的两条线推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线如果两个圆相切,那么切点一定在连心线①两圆外离 d>R+r ②两圆外切 d=R+r

  ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

  角平分线的性质:角平分线上的点到角的两边距离相等,角的内部到两边距离相等的点在角平分线)相交线与平行线线段垂直平分线定义:过线段的中点并且垂直于线段的直线叫做线段的垂直平分线;线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等,到线段两端点的距离相等的点在线段的垂直平分线;

  ①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补;平行公理:经过直线外一点有且只有一条直线)三角形三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;三角形的内角和定理:三角形的三个内角的和等于 ;三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;三角形的三条角平分线交于一点(内心);三角形的三边的垂直平分线交于一点(外心);三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;全等三角形的判定:

  ①边角边公理(SAS)②角边角公理(ASA)③角角边定理(AAS)④边边边公理(SSS)⑤斜边、直角边公理(HL)

  等腰三角形的性质:①等腰三角形的两个底角相等;②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)等腰三角形的判定:有两个角相等的三角形是等腰三角形;直角三角形的性质:①直角三角形的两个锐角互为余角;②直角三角形斜边上的中线等于斜边的一半;③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);④直角三角形中 角所对的直角边等于斜边的一半;直角三角形的判定:①有两个角互余的三角形是直角三角形;

  ②如果三角形的三边长a、b 、c有下面关系 ,那么这个三角形是直角三角形(勾股定理的逆定理)。

  圆心角、弦和弧三者之间的关系:在同圆或等圆中,圆心角、弦和弧三者之间只要有一组相等,可以得到另外两组也相等;

  垂径定理(及垂径定理的推论):垂直于弦的直径平分弦,并且平分弦所对的两条弧;

  圆心角、弧、弦、弦心距之间的关系定理及推论:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等;

  推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦心距中有一组量相等,那么它们所对应的其余各组量分别相等;

  圆周角定理的推论:直径所对的圆周角是直角,反过来, 的圆周角所对的弦是直径;

  切线长定理:从圆外一点引圆的两条切线,这一点到两切点的线段相等,它与圆心的连线平分两切线的夹角;

  扇形面积: 或 (R为半径,n是扇形所对的圆心角的度数, 为扇形的弧长)

  作一条线段等于已知线段,作一个角等于已知角;作已知角的平分线;作线段的垂直平分线;过一点作已知直线)视图与投影

  画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图);

  图形旋转的基本性质:对应点到旋转中心的距离相等,对应点与旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等;

  相似三角形的设别方法:①两组角对应相等;②两边对应成比例且夹角对应相等;③三边对应成比例

  相似三角形的性质:①相似三角形的对应角相等;②相似三角形的对应边成比例;③相似三角形的周长之比等于相似比;④相似三角形的面积比等于相似比的平方;

  图形的位似与图形相似的关系:两个图形相似不一定是位似图形,两个位似图形一定是相似图形;

  除0之外,任何自然数都是由若干个“1”组成的,“1”是数个数的单位,称作自然数的单位

  自然数的全体:0,1,2,3,4,…,n…,叫做自然数的集合,简称自然数集

  用字母表示任一个自然数,来说明对于任何自然数的运算普遍成立的运算规律和运算特征即它们的共同性质,并简称为运算通性或运算律

  a^n中,a叫做底数,自然数n叫做指数,乘方的结果a^n叫做幂(读作“a的n次幂”或“a的n次方”)

  两个同底数(不为0)、同指数的幂相除,其商等于1a^0=1 (a!=0)

  分数有一个重要的基本性质:一个分数的分子、分母同时乘以或除以同一个不为零的数,分数的值不变

  对任一个数a,总能有一个数-a,使它们可以相消,像这样只是符号不同的两个数,叫做互为相反数

  互为相反数的一对数,在数轴上总是表示到原点距离相等的一对点零与它们的相反数都用原点表示

  两个符号相反的有理数相加,将较大的绝对值减去较小的绝对值,符号取绝对值较大的加数的符号

  含有加减运算的式子,都能转化成井含有加法运算的式子,我们称它为“代数和”

  去括号法则:去掉紧接正号后面的括号时,括号里的各项都不变;去掉紧接负号后面的括号时,括号里的各项都要变号

  添括号法则:紧接正号后面添加括号时,括号到括号里的各项都不变;紧接符号后面添加括号时,括到括号里的各项都要变号

  非零有理数的乘方,将其绝对值乘方,而结果的符号是:正数的任何次乘方都取正号;负数的奇数乘方取负号,负号的偶次乘方取正号

  一般地,一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位这时,从左边第一个非零数字起到精确到那一位数字止,所有的数字,都叫做这个数的有效数字

  任意两个有理数的和、差、积、商(0不作除数)都还是有理数这就是有理数四则运算的封闭性相比之下,在自然数范围内,除法(除数不为0)、减法都不封闭;在整数范围内,除法(除数不为0)也不封闭

  任意一个有理数a,总有它唯一的一个相反数-a,使得(-a)+a=a+(-a)=0因而,有理数减法,就可以转化为加法,即a-b=a+(-b)

http://niatsholat.com/xiangsixinghu/91.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有